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The Wrong Way to Do Multilevel Mediation
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USE FIXED SLOPES TO CALCULATE INDIRECT EFFECT



Bauer, Preacher, & Gil (2006); Kenny, Korchmaros, and Bolger (2003) 

Why is this Bad?

• The indirect effect is biased. 

• So the total effect is biased too. 

• They are biased by how much the random slopes a and b covary.

Bias = COV(ai, bi) = σab 

Real indirect effect = (a × b) + COV(ai, bi)  
Real total effect = (a × b) + COV(ai, bi) + c'
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How do we determine the robustness of our effects?

• There have been approaches put forward, but… 

• Bootstrapping is ideal because 
• It does not require the assumption that the 
    random effects are normally distributed. 
• It is already ubiquitous in social psychology 
    (especially in mediation analysis)
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Goals of Current Demonstration

• Demonstrate how you can calculate unbiased  
      indirect and total effects in multilevel mediation  
      models.

• Demonstrate how you can use a bootstrapping 
      approach to estimate confidence intervals for 
      your effects. 



Research Questions

• Will people rate their target in-group more warmly 
      than target outgroups?

• Can this be explained by greater sympathy toward 
      the target in-group (i.e., an indirect effect).



Method: Sample

• N = 340 (community members) 

• 62% female, 38% male 

• Age range: 16-75 

• Ethnicity: 33% White, 28% East Asian, 28% South 
                     Asian, 5% Black, 3% Arab, 2% Latino 
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Method: Questionnaire

• Demographic information (e.g., ethnicity). 

• Sympathy (0 = not at all sympathetic to 10 = very 
    sympathetic) toward 7 target ethnic groups. 

• Warmth (0 = cold to 10 = warm) toward 7 target 
    ethnic groups.
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Bootstrap Analysis in R: 

•  Created a function “indirect.mlm” 

•  Runs the relevant multilevel models in each resample 

•  Multiplies together the random a and b slopes and 
takes    

      the mean of these products 

•  Use the “boot” package to do the multilevel mediation

Method: Questionnaire



Within-Person Effects: 
•  Unbiased Indirect effect = Mean(ai × bi) 
•  Unbiased Total effect = Mean(Indirect effecti + c'i)

Between-Person Effects: 
• Indirect effect = a × b 
• Total effect = Indirect effect + c' 

Analytic Approach
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Bias in indirect effect:
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Results

• Difference between biased and unbiased effects is equal to covariance between  
      random slopes for paths a and b.   

Bauer et al. (2006) 
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Results

• Difference between biased and unbiased total effect is equal to  
  
                                    abunbiased – abbiased + σab 

Bauer et al. (2006) 
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Take Home Message

• Proof of concept 
• You can bootstrap indirect effects in multilevel 
    mediation  analysis.

 www.page-gould.com/r/
indirectmlm
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Questions directed to any speaker?


